Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Transl Anim Sci ; 8: txad142, 2024.
Article in English | MEDLINE | ID: mdl-38425544

ABSTRACT

Panax notoginseng is a Chinese medicine with a long history in which stems and leaves are the wastes of processing Panax notoginseng and have not been effectively utilized. The effects of diets containing Panax notoginseng stems and leaves on the cecal short-chain fatty acid (SCFA) concentration and microbiome of independent pigs were studied. Diets containing Panax notoginseng stems and leaves did not affect the concentration of SCFA in the cecal contents of Duzang pigs but affected the microbial composition and diversity. Firmicutes, Proteobacteria, and Bacteroidetes dominate in the cecal of Duzang pigs. Feeding Duzang pigs with a 10% Panax notoginseng stems and leaves diet increases the abundance of Lactobacillus, Christensenellaceae R-7 group, and Akkermansia in the cecal. We found 14 genera positively associated with acetate, and they were Lactobacillus, Ruminococcaceae UCG 005, Ruminiclostridium 6; Escherichia Shigella and Family XIII AD3011 group showed negative correlations. Solobacterium, Desulfovibrio, and Erysipelatoclostridium were positively associated with propionate. Campylobacter, Clostridium sensu stricto 11, and Angelakisella were positively associated with butyrate. In conclusion, Panax notoginseng stems and leaves could affect the cecal microbial community and functional composition of Duzang pigs. Panax notoginseng stems and leaves reduce the enrichment of lipopolysaccharide biosynthetic pathway of the cecal microbiome, which may have a positive effect on intestinal health. The higher abundance of GH25 family in Duzang pig's cecal microbiome of fed Panax notoginseng stems and leaves diet. This increase may be the reason for the microbial diversity decrease.

2.
Org Lett ; 26(6): 1224-1228, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38305744

ABSTRACT

The semipinacol rearrangement is a powerful and versatile method for constructing all-carbon quaternary stereocenters. The development of catalytic asymmetric semipinacol rearrangements using multifunctionalizable electrophiles remains highly sought-after in organic synthesis. In this study, a catalytic enantioselective allylic cation-induced semipinacol rearrangement reaction was presented that enables the simultaneous construction of two skipped chiral carbon centers. Chiral Ir(I)-(P,olefin) and Sc(OTf)3 catalysts cooperatively initiate the asymmetric allylic alkylation of alkenyl cyclobutanols with allylic alcohols, triggering ring expansion of the cyclobutanol moiety through a stereoselective 1,2-alkyl migration. The reaction afforded a range of cyclopentanones bearing an α-quaternary carbon that is adjacent to a chiral allyl scaffold. The products were applied to synthesize enantioenriched fused tricyclopentanoids bearing four stereogenic carbon centers.

3.
BMC Genomics ; 24(1): 770, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087243

ABSTRACT

BACKGROUND: As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. RESULTS: The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. CONCLUSIONS: In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.


Subject(s)
Endothelial Cells , Transcriptome , Animals , Swine , Plant Breeding , Hepatocytes/metabolism , Liver/metabolism
4.
Front Vet Sci ; 10: 1289546, 2023.
Article in English | MEDLINE | ID: mdl-38099001

ABSTRACT

Pu-erh tea pomace (PTP), a solid substance after extracting functional substances or steeping tea, is rich in crude protein, and crude fiber, and could be used as considerable bioactive substances in animal production. However, its application as poultry feed and its role in regulating the characteristics of gut microorganisms is unclear. The present study investigated the effects of PTP on growth performance and gut microbes of chicken. A total of 144 Chahua chickens No. 2 were individually housed and divided into three groups which were fed diets containing 0% (CK), 1% PTP (T1), and 2% PTP (T2), respectively. The serum and cecum contents were collected after slaughter for analysis. The results indicated that growth performance and carcass traits were not affected by the PTP content. Serum total triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in the T1 and T2 groups were significantly lower than in the CK group (p < 0.05). The gut microbiota α-diversity in the T2 group was significantly lower than in the CK group (p < 0.05). Based on partial least squares-discriminant analysis (PLS-DA), we observed significant segregation in gut bacterial communities among the groups. At the phylum level, Bacteroidetes and Firmicutes were dominant in the cecum, occupying about 85% of the cecum flora. The relative abundance of Bacteroidetes tended to increase. At the genus level, the relative abundance of Bacteroides is the highest in the CK、T1 and T2 groups. The relative abundances of Bacteroides and Prevotellaceae_UCG-001 microorganisms in the T2 group were significantly higher than in the CK group (p < 0.05). However, the relative abundance of CHKCI001 microorganisms in the T2 group was significantly lower compared to the CK group (p < 0.05). TG content was significantly positively correlated with CHKCI001 relative abundance, and significantly negatively correlated with Prevotellaceae_UCG-001 relative abundance (p < 0.05). Moreover, the LDL-C content was significantly positively correlated with CHKCI001 relative abundance (p < 0.05). In conclusion, PTP could decrease the cholesterol levels in the blood by improving the composition of gut microbiota, which provides a reference for the application of PTP in the poultry industry.

5.
Sci Rep ; 13(1): 20862, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012242

ABSTRACT

This study investigated the orbital morphological features that lead to fractures at different sites by comparing patients with isolated inferior wall fracture (IWF) to patients with isolated medial wall fracture (MWF). This study analyzed the orbital morphologic characteristics of all orbital fracture patients who underwent orbital computed tomography (CT) scans between January 2017 and October 2022. On CT scans, the bony structures of the orbit were measured. We investigated the bilateral symmetry of orbital. In addition, orbital morphological differences were compared between patients with fractures of the medial wall and those with fractures of the inferior wall. A total of 135 patients with orbital fractures were included in the study. Of these, 91 were isolated MWFs and 44 were isolated IWF. We confirmed the symmetry of bilateral orbits and measured the orbit of the uninjured side. No differences were found between the MWF group and the IWF group in terms of ocular prominence, horizontal orbital diameter, orbital rim angle, sagittal orbital depth, sagittal orbital depth, and angle of inferior wall inclination. The distance between the infraorbital nerve (ION) entry point and the orbital rim was significantly smaller in the inferior lateral wall fracture group than in the MWF group (11.87 ± 2.54 vs 14.90 ± 4.64, P < 0.001), and the percentage of type 1 ION was significantly lower in the IWF group than in the MWF group (40.9% vs 65.9%, P = 0.012). We demonstrated the symmetry of bilateral orbits and found that when the point where the ION enters the infraorbital canal is near the orbital rim, patients are more prone to suffering a fracture of the inferior wall after orbital trauma. It is less likely for patients with type 1 ION to suffer an IWF following an orbital fracture.


Subject(s)
Eye Injuries , Orbital Fractures , Humans , Orbital Fractures/diagnostic imaging , Retrospective Studies , Orbit/diagnostic imaging , Tomography, X-Ray Computed/methods
6.
Animals (Basel) ; 13(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570263

ABSTRACT

This study was conducted to evaluate the influences of supplementing Ampelopsis grossedentata flavonoids (AGF) on the rumen bacterial microbiome, plasma physiology and biochemistry, and growth performance of goats. Twenty-four Nubian kids were randomly allocated to three dietary treatments: the control (CON, basal diet), the 1.0 g/kg AGF treatment (AGF), and the 12.5 mg/kg monensin treatment (MN). This trial consisted of 10 days for adaptation and 90 days for data and sample collection. The results reveal that Bacteroidetes, Firmicutes, and Proteobacteria are the dominant phyla in kids' rumen. Compared with the CON group, the alpha diversity in the MN and AGF groups significantly increased (p < 0.01). Beta-diversity shows that rumen microbial composition is more similar in the MN and AGF groups. LEfSe analysis shows that Prevotella_1 in the AGF group were significantly higher than those in the MN and CON group. The high-density lipoprotein cholesterol and glucose levels in the AGF group were significantly higher than those in the CON group (p < 0.05), whereas the low-density lipoprotein cholesterol, glutamic-pyruvic transaminase, and alkaline phosphatase levels exhibited the opposite trend. The average daily gains in the AGF and MN groups significantly increased, while the feed-to-gain ratios were significantly decreased (p < 0.05). The results suggest that adding AGF to the diet improves microbial composition and has important implications for studying juvenile livestock growth and improving economic benefits.

7.
Front Microbiol ; 14: 1197981, 2023.
Article in English | MEDLINE | ID: mdl-37485506

ABSTRACT

Objective: Host genetics and environment participate in the shaping of gut microbiota. Diannan small ear pigs and Diqing Tibetan pigs are excellent native pig breeds in China and live in different environments. However, the gut microbiota of Diannan small ear pigs and Diqing Tibetan pigs were still rarely understood. Therefore, this study aimed to analyze the composition characteristics of gut microbiota and metabolites in Diannan small ear pigs and Diqing Tibetan pigs. Methods: Fresh feces of 6 pigs were randomly collected from 20 4-month-old Diannan small ear pigs (DA group) and 20 4-month-old Diqing Tibetan pigs (TA group) for high-throughput 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolome analysis. Results: The results revealed that Firmicutes and Bacteroidetes were the dominant phyla in the two groups. Chao1 and ACE indices differed substantially between DA and TA groups. Compared with the DA group, the relative abundance of Prevotellaceae, and Ruminococcus was significantly enriched in the TA group, while the relative abundance of Lachnospiraceae, Actinomyces, and Butyricicoccus was significantly reduced. Cholecalciferol, 5-dehydroepisterol, stigmasterol, adrenic acid, and docosahexaenoic acid were significantly enriched in DA group, which was involved in the steroid biosynthesis and biosynthesis of unsaturated fatty acids. 3-phenylpropanoic acid, L-tyrosine, phedrine, rhizoctin B, and rhizoctin D were significantly enriched in TA group, which was involved in the phenylalanine metabolism and phosphonate and phosphinate metabolism. Conclusion: We found that significant differences in gut microbiota composition and metabolite between Diannan small ear pigs and Diqing Tibetan pigs, which provide a theoretical basis for exploring the relationship between gut microbiota and pig breeds.

8.
Front Vet Sci ; 10: 1069809, 2023.
Article in English | MEDLINE | ID: mdl-37008364

ABSTRACT

The immune function of the intestinal mucosa plays a crucial role in the intestinal health of hosts. As signaling molecules and precursors of metabolic reactions, intestinal chyme metabolites are instrumental in maintaining host immune homeostasis. Saba (SB) pigs, a unique local pig species in central Yunnan Province, China. However, research on jejunal metabolites in this species is limited. Here, we used immunohistochemistry and untargeted metabolomics by liquid chromatography mass spectrometry (LC-MS/MS) to study differences in jejunal immunophenotypes and metabolites between six Landrace (LA) and six SB piglets (35 days old). The results showed that the levels of the anti-inflammatory factor interleukin 10 (IL-10) were markedly higher in SB piglets than in LA piglets (P < 0.01), while the levels of the proinflammatory factors IL-6, IL-1ß, and Toll-like receptor 2 (TLR-2) were markedly lower (P < 0.01). Furthermore, the levels of mucin 2 (MUC2) and zona occludens (ZO-1), which are related to mucosal barrier function, were significantly higher in SB piglets than in LA piglets (P < 0.01), as were villus height, villus height/crypt depth ratio, and goblet cell number (P < 0.05). Differences in jejunal chyme metabolic patterns were observed between the two piglets. In the negative ion mode, cholic acid metabolites ranked in the top 20 and represented 25% of the total. Taurodeoxycholic acid (TDCA) content was significantly higher in SB piglets than in LA piglets (P < 0.01). TDCA positively correlated with ZO-1, villus height, villus height/crypt depth ratio, and goblet cell number. These results suggest that SB pigs have a strong jejunal immune function and that TDCA was positively regulates jejunal immunity and mucosal barrier function. Our findings provide a reference for understanding intestinal immune function in different pig breeds and for the discovery of potential biomarkers to help solve health issues related to pig production.

9.
Front Vet Sci ; 10: 1136485, 2023.
Article in English | MEDLINE | ID: mdl-36875993

ABSTRACT

With the improvement of consumers' requirements for pork quality, the method of crossbreeding with excellent local pig breeds to improve meat quality is popular. Saba pig has high reproduction rate, good meat quality and high utilization rate of roughage, but its excellent characteristics have not been fully developed and utilized. To promote the development and utilization of Saba pigs and production of high-quality pork, the meat quality traits and glycolysis potential of Duroc × (Landrace × Yorkshire) (DLY), Berkshire × (Duroc × Saba) (BDS), and Duroc × (Berkshire × Saba) (DBS) three-way crossbred pigs were compared. The results showed that DLY had the highest live weight, carcass weight, lean meat percentage, drip loss, glycolysis potential, muscle diameter, and relative mRNA expression levels of type IIb muscle fibers as well as the lowest ultimate pH (p < 0.05). The lightness value of DBS was the highest (p < 0.05). Among the three crossbred pigs, myristic, arachidic, palmitoleic, and eicosenoic acids were the highest in BDS. These results indicated that the carcass traits of local crossbred pigs were worse than those of DLY pigs, but meat quality was markedly higher, with BDS showing the best meat quality.

10.
Poult Sci ; 102(3): 102454, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682129

ABSTRACT

Diet may affect gut microbial composition and diversity. There were 3 dietary groups: 0% citrus pulp diet (C), 1.5% citrus pulp diet (I), and 2.5% citrus pulp diet (II). A total of 180 healthy AA broilers (21-day old) were divided into 3 groups (C, I, and II), each group was set up with 6 replicates, and each replicate including 10 broilers (half male and female). At 42 d, the cecal contents of 18 broiler chickens were collected after slaughter. The cecal contents were analyzed using 16S rRNA sequencing technology. Compared with group C, the abundance of Firmicutes in groups I and II decreased, while the relative abundances of Bacteroidetes, Verrucomicrobia, Lactobacillus, and Faecalibacterium increased. LEfSe analysis showed that Actinobacteria, Coriobacteriia, Coriobacteriales, and Ruminococcaceae_bacterium_Marseille_P2935 in group I were significantly higher than those in group C. Bacteria, Coriobacteriales, Coriobacteriia, Coriobacteriaceae, Slackia, Bacteroides_sp_Marseille_P3132, and Lactobacillus_pontis in group II were significantly higher than those in group C. The Staphylococcaceae, Bacteroides_sp_Marseille_P3132, Macroccus, Lactobacillus_pontis, and Streptococcus_equinus in group II were significantly higher than those in group I. Functional predictions indicated that the cecal microbiota of broilers fed the 2.5% citrus pulp diet was more tend to utilize carbohydrates through glycolytic/gluconeogenesis metabolism. Adding citrus pulp to the diet affects the microbial composition and has important implications for studying gut health and improving economic benefits.


Subject(s)
Chickens , Diet , Animals , Male , Female , Chickens/genetics , RNA, Ribosomal, 16S/genetics , Diet/veterinary , Cecum/microbiology , Bacteria , Animal Feed/analysis , Dietary Supplements
11.
Anim Biotechnol ; 34(4): 1566-1572, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35189068

ABSTRACT

Fat storage-inducing transmembrane protein 2 (FITM2) plays an important role in regulating lipid storage and could be regarded as a candidate gene for intramuscular fat deposition in pigs. The aim of this study was to clone the coding domain sequence (CDS) of FITM2 gene, to compare the nucleotide acid and deduced amino acid sequences between breeds and species, to analyze the structure and characteristics of protein and to detect the expression profile of gene. The results exhibited that the CDS of FITM2 gene was 789 bp in length. The mutation of nucleotide acids led to the mutation of deduced amino acids between Banna miniature inbred pigs and other two breeds (Yorkshire × Landrace pigs and Duroc × (Landrace × Yorkshire) pigs). It was indicated that high identities of nucleotide acid and deduced amino acid sequences between Banna miniature inbred pigs and other species. The deduced amino acids were composed of loops and alpha helices in the structure. FITM2 protein may be a 30 kDa hydrophobic protein with 26 phosphorylation sites and one potential N-glycosylated site. FITM2 gene was widely expressed in various tissues, and the highest expression level was in adipose tissue.


Subject(s)
Adipose Tissue , Nucleotides , Animals , Swine/genetics , Cloning, Molecular , Amino Acids , Sus scrofa
12.
Front Vet Sci ; 10: 1296208, 2023.
Article in English | MEDLINE | ID: mdl-38249550

ABSTRACT

Introduction: Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods: Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results: The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion: In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.

13.
Front Genet ; 13: 999535, 2022.
Article in English | MEDLINE | ID: mdl-36313418

ABSTRACT

To investigate the difference of microbial communities among Diannan small-ear (DNSE), Dahe black (DHB) and Yorkshire (YS) pigs, we compared the microbial taxonomic and functional composition using a metagenomic approach. A total of 1,002,362 non-redundant microbial genes were identified, DHB and YS pigs had more similar genetic makeup compared with DNSE pigs. Bacteroidetes, Firmicutes and Spirochetes were the three most abundant phyla for all pig breeds, and DNSE pigs had a higher abundance of Prevotella genus than DHB and YS pigs. The functional profiles varied among the three pig breeds, DNSE pigs had more active carbohydrate metabolism and more abundant antibiotic resistance genes than the other two pig breeds. Moreover, we found that peptide and macrolide resistances genes in DNSE pigs were more abundant than that in DHB pigs (p < 0.05). This study will help to provide a theoretical basis for the development of native pig breeds in Yunnan Province, China.

14.
J Clin Pharm Ther ; 47(9): 1368-1378, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35971667

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Allopurinol-induced drug reaction with eosinophilia and systemic symptoms (DRESS) is a rare but serious and potentially life-threatening drug hypersensitivity syndrome. In this study, we aimed to investigate the clinical features, treatment outcomes, and prognostic factors of allopurinol-induced DRESS. METHODS: Case reports of allopurinol-induced DRESS published by China from January 2000 to August 2021 were retrieved from CNKI, Wan Fang, VIP, and PubMed databases for analysis. RESULTS AND DISCUSSION: This study included 52 patients, consisting of 41 (78.8%) males and 11 (21.2%) females (M:F = 3.7:1). The mean of age was 56.1 ± 17.1 years (range: 18-86 years). The mean of latency periods was 24.6 ± 15.0 days (range:1-63 days). Most patients presented with fever, cutaneous eruption, eosinophilia, lymphadenopathy, and facial edema. 36/52 (69.2%) patients showed two or more internal organs involved. Liver and kidney injuries were the most common visceral manifestation. Pulmonary involvement (34.6%), cardiac involvement (25.0%) and gastrointestinal involvement (21.2%) were relatively less known but severe complications. 2/52 (3.8%) patients showed nervous system involved, presenting as leukoencephalopathy or peripheral neuropathy. 2/52 (3.8%) patients presented with secondary hemophagocytic lymphohistiocytosis.1/52 (1.9%) patient developed pure red cell aplasia and 1/52 (1.9%) patient developed painless thyroiditis. HLA*B 58:01 allele was tested in 18/52 (34.6%) patients. 16/18 (88.9%) cases were positive. 48/52 (92.3%) patients were treated with systemic corticosteroids. 16/52 (30.8%) patients were cured, 23/52 (44.2%) patients received partial recovery, and 13/52 (25.0%) patients were died. Septic shock, gastrointestinal bleeding and multiple organ failure were the leading causes of death. Advanced age, underlying cardiovascular disease, chronic kidney disease and high dose of allopurinol, infection and internal organ involvement (including kidney, heart, lung and gastrointestinal tract) were risk factors for death. WHAT IS NEW AND CONCLUSION: We explored clinical features, treatment outcomes and prognostic factors of 52 allopurinol-induced DRESS cases in China. Ethnicity, especially Han Chinese, and positive HLA-B*58:01 allele are the clearest risk factors so far. Advanced age, underlying cardiovascular disease, chronic kidney disease and high dose of allopurinol, infection and internal organ involvement (including kidney, heart, lung and gastrointestinal tract) were associated with poorer outcomes. Early identification and discontinuation of the causative drug are crucial to the management of DRESS. For patients with severe disease, corticosteroids are recommended as the first-line therapy. However, further studies are needed to address diagnostic criteria of DRESS for early diagnosis, as well as to develop standardized corticosteroid treatment regimens.


Subject(s)
Drug Hypersensitivity Syndrome , Eosinophilia , Renal Insufficiency, Chronic , Adolescent , Adrenal Cortex Hormones , Adult , Aged , Aged, 80 and over , Allopurinol/adverse effects , Drug Hypersensitivity Syndrome/drug therapy , Drug Hypersensitivity Syndrome/etiology , Eosinophilia/chemically induced , Female , HLA-B Antigens , Humans , Male , Middle Aged , Prognosis , Renal Insufficiency, Chronic/complications , Treatment Outcome , Young Adult
15.
J Appl Microbiol ; 133(5): 2915-2930, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35882518

ABSTRACT

Intestinal microbiota is considered to play an integral role in maintaining health of host by modulating several physiological functions including nutrition, metabolism and immunity. Accumulated data from human and animal studies indicate that intestinal microbes can affect lipid metabolism in host through various direct and indirect biological mechanisms. These mechanisms include the production of various signalling molecules by the intestinal microbiome, which exert a strong effect on lipid metabolism, bile secretion in the liver, reverse transport of cholesterol and energy expenditure and insulin sensitivity in peripheral tissues. This review discusses the findings of recent studies suggesting an emerging role of intestinal microbiota and its metabolites in regulating lipid metabolism and the association of intestinal microbiota with obesity. Additionally, we discuss the controversies and challenges in this research area. However, intestinal micro-organisms are also affected by some external factors, which in turn influence the regulation of microbial lipid metabolism. Therefore, we also discuss the effects of probiotics, prebiotics, diet structure, exercise and other factors on intestinal microbiological changes and lipid metabolism regulation.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Humans , Prebiotics , Lipid Metabolism , Obesity/microbiology
16.
Front Microbiol ; 13: 826881, 2022.
Article in English | MEDLINE | ID: mdl-35516431

ABSTRACT

The physiological state of the host affects the gut microbes. The estrus cycle is critical to the reproductive cycle of sows. However, the association between gut microbes and animal estrus is poorly understood. Here, high-throughput 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolome technology were used to study the estrous cycles in Diannan small ear pigs. Significantly different gut microbiota and metabolites of sows at estrous and diestrus were screened out and the correlation was analyzed. We found that the intestinal microbial composition and microbial metabolism of Diannan small ear sows were significantly different at diestrus and metestrus. The abundances of Spirochaetes, Spirochaetia, Spirochaetales, Spirochaetaceae, Deltaproteobacteria, unidentified_Alphaproteobacteria, Ruminococcus_sp_YE281, and Treponema_berlinense in intestinal microorganisms of Diannan small ear sows at metestrus are significantly higher than that at diestrus. Propionic acid, benzyl butyrate, sucrose, piperidine, and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) were significantly enriched at metestrus compared with diestrus, which were involved in the energy metabolism-related pathways and activated protein kinase (AMPK) signaling pathway. At diestrus and metestrus, differential microbiota of unidentified_Alphaproteobacteria, Intestinimonas, Peptococcus, Terrisporobacter, and differential metabolites of piperidine, propionic acid, and benzyl butyrate, sucrose, 4-methyl catechol, and AICAR exist a certain degree of correlation. Therefore, unidentified_Alphaproteobacteria, Ruminococcus_sp_YE281, and Treponema_berlinense may have a potential role at metestrus of the Diannan small ear sows. AICAR may be apotential marker of estrus Diannan small ear sows feces, but further studies about the specific mechanism are needed. These findings provide a new perspective for sows production management and improving sows reproductive performance.

17.
BMC Genomics ; 23(1): 173, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236293

ABSTRACT

BACKGROUND: Melanin is an important antioxidant in food and has been used in medicine and cosmetology. Chicken meat with high melanin content from black-boned chickens have been considered a high nutritious food with potential medicinal properties. The molecular mechanism of melanogenesis of skeletal muscle in black-boned chickens remain poorly understood. This study investigated the biological gene-metabolite associations regulating the muscle melanogenesis pathways in Wuliangshan black-boned chickens with two normal boned chicken breeds as control. RESULTS: We identified 25 differentially expressed genes and 11 transcription factors in the melanogenesis pathways. High levels of the meat flavor compounds inosine monophosphate, hypoxanthine, lysophospholipid, hydroxyoctadecadienoic acid, and nicotinamide mononucleotide were found in Wuliangshan black-boned chickens. CONCLUSION: Integrative analysis of transcriptomics and metabolomics revealed the dual physiological functions of the PDZK1 gene, involved in pigmentation and/or melanogenesis and regulating the phospholipid signaling processes in muscle of black boned chickens.


Subject(s)
Chickens , Transcriptome , Animals , Chickens/genetics , Meat , Metabolomics , Muscle, Skeletal
18.
Anim Biotechnol ; 33(6): 1246-1254, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33704018

ABSTRACT

Growth performance and meat quality are important traits for pig production. The aim of the present study was to investigate the molecular mechanisms underlying growth performance and meat quality, and to identify novel target molecules for predicting the growth performance and meat quality. The differentially expressed genes (DEGs) in Diannan small ears pigs (DSP) and Landrace pigs (LP) were assessed by RNA-sequencing analyzing technology. A total of 339 DEGs were obtained between DSP and LP. 146 DEGs were upregulated in LP compared with DSP and 193 DEGs were upregulated in DSP compared with LP. The DEGs were significantly enriched in 26 GO and 3 KEGG pathways. The protein-protein interaction (PPI) network with 201 nodes and 382 edges was constructed and 5 modules were extracted from the entire network. The identified upregulated expression of genes involved in glycolysis and myogenesis as well as extracellular matrix may be associated with fast body and muscle deposition rates in LP. Increased expression of genes involved in PPAR signaling pathway and fatty acid metabolism as well as oxidative phosphate processes could be related to the intramuscular fat deposition and meat quality in DSP. The present study may provide an improved understanding of the growth performance and meat quality.


Subject(s)
Gene Expression Profiling , Transcriptome , Swine , Animals , Gene Expression Profiling/veterinary , Muscle, Skeletal/metabolism , Meat/analysis , Muscle Development/genetics
19.
Transgenic Res ; 31(1): 59-72, 2022 02.
Article in English | MEDLINE | ID: mdl-34741281

ABSTRACT

Leptin is a well-known adipokine that plays critical role in adiposity. To further investigate the role of leptin in adiposity, we utilized leptin overexpressing transgenic pigs and evaluated the effect of leptin on growth and development, fat deposition, and lipid metabolism at tissue and cell level. Leptin transgenic pigs were produced and divided into two groups: elevated leptin expression (leptin ( +)) and normal leptin expression group (control). Results indicated that leptin ( +) pigs had elevated leptin protein and mRNA expression levels and exhibited sluggish growth and development followed by decreased subcutaneous fat thickness, low serum triglycerides, saturated, unsaturated fatty acids and high cholesterol esters (p < 0.05). There were differences in the lipid metabolism related genes at different fat depots, including upregulation of PPARγ, AGPAT6, PLIN2, HSL and ATGL in subcutaneous, PPARγ in perirenal, and FAT/CD36 and PLIN2 in mesenteric adipose tissues and downregulation of AGPAT6 and ATGL in perirenal and AGPAT6 in mesenteric adipose tissues (p < 0.05). Additionally, in-vitro cultured leptin ( +) preadipocytes exhibited upregulation of PPARγ, FAT/CD36, ACACA, AGPAT, PLIN2, ATGL and HSL as compared to control (p < 0.05). These findings suggested that homeostasis imbalance in lipolysis and lipogenesis at adipose tissue and adipocytes levels led to low subcutaneous fat depots in leptin overexpression pigs. These pigs can act as model for obesity and related metabolic disorder.


Subject(s)
Leptin , PPAR gamma , Adipose Tissue/metabolism , Animals , Leptin/genetics , Leptin/metabolism , Lipolysis , Obesity/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , PPAR gamma/pharmacology , Swine/genetics , Triglycerides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...